Proceedings of the 2006 IEEE International Conference on Robotics and Automation

Orlando, Florida - May 2006

Cutting, ‘by Pressing and Slicing’, Applied to Robotic Cutting Bio-materials,

Part I: Modeling of Stress Distribution
Debao Zhou', Mark R. Claffee’, Kok-Meng Lee” and Gary V. McMurray

"Food Processing Technology Division, HES Laboratory, Georgia Tech Research Institute, Atlanta, GA 30332
“George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Email: {debao.zhou, gary.mcmurray}@gtri.gatech.edu, m.claffee@gatech.edu, kokmeng.lee@me.gatech.edu

Abstract

Bio-material cutting, such as meat deboning, is one the most
common operations in food processing. Automating this process
using robotic devices with closed-loop force control has shown
some promise. The control of the force trajectory directly relates
to the internal stress in the material being cut, and must provide
enough force to initiate the cut. The ability to model the stress
distribution in the bio-materials being cut would provide a better
understanding of the influencing factors and help predict the
required cutting force for the design of the cutting mechanism
and for automating the cutting operations. This research is
presented in two parts: part [ models the stress distribution when
a blade acts on the bio-material and part II discusses the
principles of biomaterial cutting. Starting with modeling a point
force in the normal and tangential direction on the boundary of a
semi-infinite body, an analytical expression for the stress tensor
has been obtained and simulated using direct integral method.
This paper provides the theoretical basis for explaining the
cutting phenomena and predicting the cutting forces, a topic to
be presented in Part II.
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1. Introduction

Bio-material cutting can be found in a number of industries, for
examples, medical industry which includes robotic surgery and
sample microtoming and food industry which includes
processing of meat, fruit, and vegetable. However, most of the
bio-material cutting tasks in a factory (such as a poultry plant)
are manually operated. Replacing manual workers with robotic
devices which are often a closed-loop force control system has
shown some promise. The desired force trajectory in this control
loop plays an important role in cutting due to the deformation of
the bio-material, which makes position control difficult to
successfully implement. The objective of this research is to
develop the principles to facilitate design of automated cutting
mechanisms. In order to accomplish this, a thorough
understanding of the science behind cutting of bio-materials is
required.

As compared to metal cutting, bio-materials have significantly
reduced friction coefficients against the knife. Thus many
researchers have formulated the food cutting problem using the

energy method; most notably, the fracture toughness [1] concept..

The potential function method [3] is widely used to derive the
closed form solution. In this method, the components of the
displacement and the stress tensor are expressed in terms of the
space derivatives of certain airy stress functions which satisfy
biharmonic equation [4]. The closed form expression of the
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stress distribution of a point force acting in either normal or
tangential direction to the boundary of the semi-infinite body can
be found in reference [5]. As described by Love [6], the solution
to a load applied normal to an infinite half-space was given by
Boussinesq [7]. In addition, Cerruti applied the reciprocal
Theorem to obtain the solution tangential to the surface. The
solutions to these two problems can also be found in
Timoshinko’s book [8] and Johnson’s book [9]. The problem
modeled by Cerruti is about the sliding of two cylindrical
surfaces rotating around its axis and the two axes are parallel
with each other. It is fundamentally different from the cutting
problem where the two cylindrical surfaces slide along the axis
direction. Based on the derivation of the integral of the point
force airy functions, Love [10] provided the integral for a
rectangular area with constant normal pressure. Using the same
method, the solution for first—order polynomial load applied to a
rectangular surface has been completed by Dydo and Busby [11].
As described in [9], the solution of the stress and deformation
produced by a pressure distribution of the parabolic form acting
on the rectangular area was mentioned, however only the closed
form solutions to certain locations, such as the surface and the
symmetric axis, were evaluated. The explicit solution for normal
deflection due to a polynomial distribution of normal and
tangential pressure acting on a triangular region has also been
given by Svec and Gladwell [12] and Li and Berger [13],
respectively. Poritsky and Schenectady [14] considered stress
and deflections of cylindrical bodies in contact with applications
of gears and locomotive wheels.

An alternative to the airy stress function methods is to monitor
the internal stress distribution and force distribution, for example,
using Hertz contact mechanics [2]. This research uses the
integration of the stress solution from a point force to get the
stress distribution on a surface. In this paper, analytical solutions
for both the constant and linear force intensity are provided and
also evaluated graphically. The cutting mechanics offered here
provides a basis to explain the initiation of cutting fracture and
to predict the force during cutting. This analysis allows for a
better understanding of the mechanism that initializes the cutting
facture and continues the cuts.

The remainder of this paper is organized as follows: Section 2
describes the modeling method. Simulation and analysis are
presented in Section 3. Finally, the conclusions are drawn in
Section 4.

2. Modeling of Cutting Interaction

This paper simplifies the bio-material cutting problem as a
distributed force intensity acting on the surface of a semi-infinite
bio-material body as shown in Fig. 1. The coordinate frame xyz
is fixed on the pre-deformed body where the x- and y- axes are
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on the boundary, the x-axis points towards the direction of the
horizontal force and the x-, y- and z-axes follow the right-hand
rule. The area that the total force (with magnitude P) acts is (-
oo,00) in the x direction, and [yy, y,] in the y direction. In Fig. 1,
P,, and P, are the magnitude of the point forces acting in the z
and x directions respectively.

In this analysis, several assumptions have been made:

1. The material is isotropic and the theory of elasticity can be
applied.

2. The motion of the blade relative to the bio-material is
translational. The moving speed of the knife is slow enough
such that the cutting can be treated quasi-statically.

3. The force along any line parallel to the x-axis is constant. The
cutting force intensity is zero at the edge of the contact area.

4. The offcuts moves away from the knife and no friction force
acts on the side of the blade. Contact area of the blade edge
with the bio-material does not change once full contact is
established.

Using the principle of superposition, the area force distribution
was obtained through the integral of the point force to line force,
and the line force was integrated to obtain the area force. The
formulation is discussed in detail in the following Sections.

Fig. 1 Simplified cutting forces acting on the boundary of a semi-infinite body.

2.1 Stress Distribution due to Point Force

The formulation here starts from the point force acting on a
semi-infinite body.

Normal force only

For a point force P,, and s =0, the stress distribution is given by
the Boussinesq solutions [7]. For a material with poisson’s ratio
U, the normal stress o and the shear stress 7 at point A(x, y, z)
can be found in [4] and [5]:

e A (1a)

where
NS KRV SIS F
a;‘:[(lRiﬂz)R %} +i- 2ﬂ{E_Ri ]x_z (1c)
O'jzii; (1d)
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In (1), the superscript v’ denotes values related to P,,; and R and r
are the distances of 4 from the point at which the cutting force acts.

Tangential force only

Where only P, exists and s = 0, the stress distribution is known
as the Cerruti solution and is given in [5]:
P
O_h — O_h' O_h' O_h' Th' Th Th' ph 2a
A (2a)
where
(1-2u)( . . 2R\ 3x°
O_h — R _ _ 2b
; |:(R +z) ( R+ R’ (2%)
, - 2Rx’ :
h (1 2/’12) 3R2 2 _ 3y2 (zc)
Y (R+2) R+z | R
(-2u)( . . 2R*) 3x°
Tv = R +x +— |- 2d
) y[(mz)z( R+z | R d)
. 3xz’ - 3 ' 3x’z
o’ 2—7, i‘, :_%, T;: =— I (2e-g)

The superscript /4’ in (2) expresses the stresses are generated by
external force Py

2.2 Line Force Formulation

For a uniformly distributed line force ( p, or p,, ),

P = ]ip,vds and P, = ]p,hds.

Normal line force only
In the case with vertical forces acting along a line of length ds,
the stress at point 4 can be expressed as

o |=lo7 (pds, 1, (x— ), v, 2)]. 3)

ds is an infinitesimal distance, therefore (3) is still applicable to
the stress distribution at point 4. By applying the Superposition
Theorem [4], the stress distribution can be obtained for the given
force acting on the line segment [x;, x,] along the x-axis. At any
point of the semi-infinite body, there are

T ]: J.[O'}Z'S‘ > “4)

where superscript v expresses that the stress is due to the
segment line force between [x;, x,]. Then, the stresses at any
point in the semi-infinite body generated by line force acting
along (x, x») can be found in (A-1). When x; — -0 and x, — oo,
the stress distribution is

oo oo oo Voo

la‘( o 0. T,

b o o

.

) : : (5)
PZ y z vz

- 0 0
Jr(y +z° )[ y 477 yi+z yi+z’ :|
In (5), the superscript veo indicates that the stress is generated by
external force acting on the infinitely long line. References [4] [8]
[9] also provided similar solutions but only [O—\w o f‘j] are

not always zero and the other stress components are uniformly
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zero. However, the above deduction shows that 5 is not always

zero. This can be explained with the aid of Fig. 2. When the
force intensity pj, results in a deformation along the x direction,
the normal stress o, prevents this deformation (due to a semi-
infinite plane). Another explanation is that the normal line force
distribution is a plane stress problem. For the plane stress
problem to be true, the following conditions must be met: the
strain in x direction must be zero and o, = (0, + o). It can be
easily seen that (A-1) and (5) satisfy the second condition. If the
poisson’s ratio is zero, there is o, = 0 since there is no
deformation in x direction and the first condition is satisfied.

L,

%

z

—>

Fig. 2 Distributed vertical force acting on a point of a semi-infinite body.

Tangential line force only

Similarly, the stress distribution for the tangential line force on
the area [x, x,] can be obtained. The results are given in (A-2).
As x; and x,— -0 and oo respectively, the case changes to the
line force acting on the boundary of a semi-infinite body and the
stress distribution can be expressed as

o 7]
. (6)

Lo Jo 00 -y 0 z]
Ty

oo

o,

oo

o,

oo

2
T
xy

oo

"

T

Johnson [9] showed the same results as (6) for the tangential line
force problem by considering the static force equilibrium, which
verifies the applied integral method.

2.3 Area Force Formulation

Consider an area force (with intensity p, or p;,) of length 2a (a >
0) in the y direction.

) )
P = J-J-pvdsdt and P, = J-J-p,,dsdt.
N
In planes parallel to 0yz, the force intensity profile is assumed as
shown in Fig. 3. The force intensity is constrained as 0 at y < -a
and y 2 a and the constant force magnitude is ¢, and g at [-w, w]
in the y direction. p, (p,) is used to express the force intensity at
any point between [-a, a] and ¢, (g;) is used to express the
magnitude of the constant force intensity between [-w, w]

qv | qn

—eo 31

y

o

v
Fig. 3 Force distribution profile for the combination case.

-a -w w a

z

p» () and g, (g5) satisfy the relationship shown in (10),
9. L(y+a) at [-a, -w), (10a)
at [-w, w], (10b)

p,=——(y+a) and p, =—"—
a- w

w

pv=¢q, and p; = g,

2898

D, = 4, (y—a)and p, :L(y—a) at (w, a]. (10c)
- a w-a
The relationships between ¢,, g1, pi, and py, satisfy (11),
g, =L and g, =L (11)
a+w - W

Normal force only
At any point (x, y, z), the stress generated by the normal force
intensity between [-a, -w] can be obtained as

fn=0" :—%L(@+a)T+5F}S:_W

' T oa-w 2 |s=-a
Pl L Z[a(y—S)+(—7sy+7yz+zz)]+(a+y)7+ip s=ow
) Yoma-w (—s)y+2° 2 |s=-a
£ =o' _~l g (z[a(s—y)+(—7sy+7y‘+z‘)]+(a+y)T]s:—w

T a-w (y—s)‘+z‘ s=-a

f41v=z-:,. =0
fo=7 _Z q, z(a+s) T §=—-w
T ma-w|(s—y) +2 s=-a
fsl\‘:z-:z =0

where 7 =tan"[(y—s)/z] and I" = 1n<(s —yf+ zz>.
The stress generated by the normal force intensity between [-w,
w] can be obtained as

flz\,=0'v :2177‘,,UT Ss=w
r T |s=-w

/ =o'":;17‘, ﬂ+T s=w
2y y V4 (y _S)z 7 o
PR U S P
3 RS s =—w
f42‘,=T‘;‘_ =0

=7 = Pz s=w
fomt wls—yf+zts=-w
fsz‘,:T‘;;:

The stress generated by the normal force intensity between [w, a]
can be obtained as

fio=0" :_L/‘L((y_a)prif]”
) T w—a 2 s=w
Jfu =0 14 Z[a(y_s)-‘—(_asy-‘—ff+Z~)]+(y—a)T+£1" N
T mw-a (r=s)+2° 2" |s=
fo =0 =1 4 z[a(s—y)+(—3sy+jy*+z~)]+(y_a)T s=a
) T w—a (y—S)A+Z‘ s =
fo =7, =0
v z q, z(—a+s) s=a
= =Y 7_7"
T =1, 71'w—a[(s—y)2+z2 :|s:w
fo =7 =0

Tangential force only
The stress generated by the tangential force intensity between [-a,
-w] can be obtained as
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fiu=0"=0
Sfu=0" =0
Su=0'=0
S =7 =%i—“w(s—zT+(a;2y)Fﬁz::
fo =7, =0

- ((a+y>T+frj“ -

o ra-w 2 s =
The stress generated by the tangential force intensity between [-
w, w| can be obtained as

ﬁz/;zo-ﬁ:O; fm:O"l::O; f;znzo-f:()

S:W, =7 =0: o _ Py §=w
5 f;zn_ryz_ ’ fszn_Tz_i

o _ Py
f:un =T = A .
S=—w . T S=—w

v 2z

The stress generated by the tangential force intensity between [w,
a] can be obtained as

flsn = O'f =0
fzsn = o-l:, =0
fssn = o-l_: =0
1 —a+ s=a
fo =g =L 4 o7 At o
Y mTw-—a 2 s=w
fssn :TI:: =0
S =
fssn :Th, zlqh((_a+y)T+Zr]
Y rTw-a 2 s =
Then there are
3 3
o, =Zf1fv +Zf1fh =qvf1(y’ z,4, W)’
i=1 i=1
3 3
O-y = Zfov +2f2fh :qvfz(y’zsaaw)’
i=1 i=1
3 3
o, =Zf3fv +Zf3fh =qvf3(y,z,a,w),
i=1 i=1
3 3
Txy = ZfAfv +2f4fh =th4(y’Z’a3 W)’ (12)
i=1 i=1

Mu

3
fsfv + z fsfh :qvfs ()}, z,4, W) ’
i=1

i

o L

3

Ty: = ;frw +;fm‘h =th6(y,Z,ll, W)'

Substituting p,/=Pcoser, p,/=Psina and (11) into
(12), the stress tensor can then be expressed as

o, T, T, ficosa  f,sina f,sina
[o]= T, o, T.|= ﬁ fssina  f,cosa  f,cosa (13)
v a+w .
7. 7. O, fi.sina  f,cosa  f,cosa

3. Simulation Results

In this simulation, the influences of the parameters y, a, s, (s,)
and z are illustrated. It serves as the visualization of the stress
distribution in the material under different conditions for further
cutting principle study in part II of this work.
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3.1 Stress Changes with z at Different y (q = 1)

The stress tensor changes with y and z for the constant force
intensity are shown in Fig. 4. In Fig. 4, the abscissa is the z
coordinate starting from 0 to 10 and the ordinate is the stress
normalized by ¢ (¢ = 1), i.e. ¢ = q, = g, = | for both calculations
in the stress in z direction and x direction. Each line in each
figure expresses the stress changes with z in one y coordinate.
The stress characters are summarized in Table 1.

It can also be observed that (7). increases as s, increases from
0 to a. When s, = a, there is (Zy)mer= o0, Which is the case when
constant force acting on y € [-a, a]. This can be observed from

9).

i . .
ye (eal) w0 =3
05 v=0
R L L L L
i 2 4 6 3 10
n z{yel-2,2],(a=1)

(a) ov

-5 .
a 2 4 B g 10
fvel2, 2], (a=1]
(b) 7,
ns
) ye (- () Lo (0 o
05
s i ) ) )
1] 2 4 g g 10
zf{yel2,2].(a=1))
(© 0
1 /s,
0s ye (-ars)) uye(s”sp) u(spaj
il 5
-DS?
1 }f:Sp L 1 1 1
0 2 4 g g 1
z(yel-2.2,(a=1)
(d) zy

Ifpel2, 2 (a=1))
(e) -
1
ve(s, sp)
05 ve (@ s ) (s, o
e,
D 1 1 1 n
il 2 4 3 g 10
I{yel2,2] (a=1)
) 7

Fig. 4 Stress tensor changes along z coordinate for different y (y changes at step
of0.1)ata=1,s,=-s,=0.65and g = 1.
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Table 1 Maximum and minimum stress (@ = 1, s, = 0.65, g = 1).

Item Maximum stress Minimum stress (0) location
Magnitude Location
abs(ox) 06 Y€ (ms) | (D)ye(e, -a)U(a =)andz=0
andz=0 or Q)y=Foor(3)z= oo
abs(c) ! Ve Gns) | (Dye(e, -a)U(a,=)andz=0
andz=0 or Q)y=Zoor(3)z= oo
abs(c) ! Ve Gns) | (Dye(e, -a) U (@ =)andz=0
andz=0 or 2)y=toor(3)z= o
abs(zy) 0.987 V=5, 0L Sp, (1)y=%eand0
and z =0 or(2)z= oo
abs(t:) 0.275 Y =8, O Sp, (1)z=0or 2Q)y = teo
and z = 0.37 or(3)z= oo
abs(t.) 1 Y€ (SuSp) (1) y € (-0, -a) U (a, ) and z=0
andz=0 or 2)y=towor(3)z= o

3.2 Stress Change with y at Different z (p = 1)

In order to see the detailed change of the stress tensor with y and
z, another set of simulation results are provided. In the following
results, the abscissa is the y coordinate around [-a, a] region. The
results are also normalized with p, i.e. p = p, = p, = 1. The
ordinate is the force magnitude. The stress tensor is drawn in
each graph with a different z coordinate. Each line in the
following figures corresponds to one z coordinate, z € (0, 1]
with step 0.2. For the sake of clarity, the different stress
components are expressed in different line style. For example,
solid lines in Fig. 5 show the stress component 7, and dot +
solid lines show o, etc.

The tensor changes with the different combination of the
constant and linearly distributed force intensity are shown in Fig.
5, namely, the constant case, the combined case and the linear
case in (a), (b) and (c), respectively. The force characters are
summarized in Tables 2, 3 and 4, respectively.

Table 2 Maximum stress at constant intensity (Fig. 5(a)).

O: (2% o G- Gy &=
y=a,z=0 oo
y=a,z=037 0.158
y=0,z=0 0.3 0.5 0.5 0.5
Table 3 Maximum stress (combined case: s,= 0.85a).
O: (2% o G- Gy Gz
y=0.84a,z=0 0.625
y=0.84a,z=0.37a 0.171
y=0,z=0 037 | 0.61 | 0.61 0.61
Table 4 Maximum stress (linear case, Fig. 5(c)).
O: (2% o G- Gy &=
y=07a,2z=0 0.56
y=a,z=0.37a 0.185
y=0,z=0 0.6 1 1 1

From Tables 1-3, the maximum stress locations are also
indicated. All the stress components, except 7., have the
maximum magnitude on the surface and decrease as z increases.
The maximum 7. happens inside of the material. The maximum
0,, 0. and 7. are in the same magnitude of g. The maximum o;
depends on poisson’s ratio as well as o, and o.. The larger the
percentage of the constant force intensity is for the force

distribution, the bigger z,. 7, reaches infinity when p is entirely
constant force intensity.

I:r&lﬂd T

yia=1)

gaﬂd T

Arrow directions shows z changesrom 0 to 1

-1 0 1 2
y(@=1)
(b) s, = 0.85 (combined intensity),

045

gand T
]

Arrow direction showsiz'changes from 0 to 1
-2 -1 1] 1 2
yia=1]

(c) s, = 0 (linear intensity).

Fig. 5 Comparison of the normalized tensor for different combination of the
constantly distribution and the linearly distribution at ¢ = 1.

4. Conclusions

In order to understand the cutting principle, the stress
distribution during cutting is studied in this paper. This provides
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a basis for optimal cutting mechanism design and provides the
desired cutting force when automating bio-material cutting. The
cutting problem is modeled as an area force acting on the surface
of a semi-infinite body. The area force is assumed to be the
combination of constant and linear distribution. By using the
direct integration method, the analytic solutions to the cutting
problem are obtained. The internal stress distribution is
illustrated graphically. The results show that the force
distribution of the combination case reflects the basic properties
of the cutting interaction.

The theory described in this paper (part I of this work) was
further analyzed in order to explain cutting problems such as the
theoretical explanation of blade sharpness, the explanation why
“pressing and slicing cuts use less force than only pressing cuts”
and what is the optimal slicing angle. The experimental results
based on potatoes were used for verification.

Appendix A

The stresses at any point in the semi-infinite body generated by
line forces p;, and py, acting along (x;, x,) are shown in (A-1) and
(A-2) respectively,

[ . . (,\ffs)°+2y4+3ylz2 1
) z|:7(y e XZR o )+ 2/{+ z4+(xfsy<3y2+2zl> ]]
+

b2

(=)
[}27172 (

1-2u

ZF(X -y +B-2u )yA]
1 (1- 2,11X2y2 + zl)z2

S R e (A1)

_plems))i-ou 2

sl BR - (-]
2y + 2 &
Py [(71+2ﬂ)+ 2[2(1*/1)r2t(1*2/1)22]}

AL,y Q9 9

sk -Gy
271'()/2 +zl)2R3
P7
27R°

and

ﬂ[7y2 +z° +(l—2,u)y2 +327 (1-2u)y’ (1—2u)y? +z2)] -
B 2 R’ z’R z(z+R)2 zz(z+R) )
/)

Py

- 2R

7.

Puyz

27R®
A )
22007 +27) R T

Q. Q.

s (A_z)

NN N

where
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2020z = (=2 ((x=5) +y*f +
[zer2,u(yz-zz)]y“r[fiux(-y”rzz)-422,(];3 +
{21‘[2)/”“)’222'24+6x2(y2-22)]-Fzz(6x2-y2+zz)}s2

i} +{'4ﬂx[2y4+y222-24+2x2(yz-zz)]-222x2(2x2-y2+zz)}g

R
22 e ez by (20742
2 oyt ey o (2 oy (7427

2Qu-1(x—s) (4u-D(x—s)

-5y +5] G=sy+»F

>

27 | ((e—sy +y°) R* R’z

(x—s)((x—s)2 +y° —2/1()/2 +zz))
(=sF 3’ o7 + 2R
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